Artin-mazur Zeta Functions in Arithmetic Dynamics
نویسنده
چکیده
This is a special case of an Artin-Mazur zeta function, which is defined for certain dynamical systems (and in general counts the number of isolated fixed points). Note that we are, as usual, not counting fixed points with multiplicity, which in this case would be something like the Lefschetz index. In fact, if we did count with multiplicity and deg f = d, then |Pern(f)| = d + 1 for all n, and after summing the geometric series we would get
منابع مشابه
A Note on the Dynamical Zeta Function of General Toral Endomorphisms
It is well-known that the Artin-Mazur dynamical zeta function of a hyperbolic or quasi-hyperbolic toral automorphism is a rational function, which can be calculated in terms of the eigenvalues of the corresponding integer matrix. We give an elementary proof of this fact that extends to the case of general toral endomorphisms without change. The result is a closed formula that can be calculated ...
متن کاملSubshifts of Quasi-Finite Type
We introduce subshifts of quasi-finite type as a generalization of the well-known subshifts of finite type. This generalization is much less rigid and therefore contains the symbolic dynamics of many non-uniform systems, e.g., piecewise monotonic maps of the interval with positive entropy. Yet many properties remain: existence of finitely many ergodic invariant probabilities of maximum entropy;...
متن کاملZeta functions for two-dimensional shifts of finite type
This work is concerned with zeta functions of two-dimensional shifts of finite type. A two-dimensional zeta function ζ0(s) which generalizes the Artin-Mazur zeta function was given by Lind for Z2-action φ. The n-th order zeta function ζn of φ on Zn×∞, n ≥ 1, is studied first. The trace operator Tn which is the transition matrix for x-periodic patterns of period n with height 2 is rotationally s...
متن کاملZeta Functions of Finite Graphs and Coverings, Iii
A graph theoretical analogue of Brauer-Siegel theory for zeta functions of number elds is developed using the theory of Artin L-functions for Galois coverings of graphs from parts I and II. In the process, we discuss possible versions of the Riemann hypothesis for the Ihara zeta function of an irregular graph.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014